为您找到与基本三角形是什么问题相关的共 202 个结果:
专题三 三角形形状的判定问题【方法总结】利用正、余弦定理判断三角形形状的两种思路(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、
专题二 三角形的三线两圆及面积问题一.中线中线定理:一条中线两侧所对边的平方和等于底边平方的一半与该边中线平方的2倍.即:如图,在中,为中点,则.证明 在中,,
专题十 解三角形综合问题考点一 正、余弦定理与三角函数结合的问题【方法总结】解三角形与三角函数交汇问题一般步骤【例题选讲】[例1]已知函数f(x)=coseq
专题四 三角形中的最值(范围)问题三角形中最值(范围)问题的解题思路任何最值(范围)问题,其本质都是函数问题,三角形中的范围最值问题也不例外.三角形中的范围
专题五 三角形中边角的计算问题三角形中基本量的计算问题主要考查正弦定理、余弦定理及三角形面积公式,最简单的问题是只用正弦定理或余弦定理即可解决.中等难度的问题要
圆锥曲线中的探索性问题与不良结构问题一、考情分析圆锥曲线中的探索性问题与不良结构问题是近年高考的热点,探索性问题通常为探索是否存在符合的点、直线或结果是否为定值
指数型函数取对数问题一、考情分析函数与导数一直是高考中的热点与难点,在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化
第八节直线与圆锥曲线问题知识点归纳1.直线与圆锥曲线的位置关系(1)直线与圆锥曲线的位置关系有相交、相切、相离;相交有两个交点(特殊情况除外),相切有一个交点,
第十节圆锥曲线中的定值问题题型归类题型一 长度或距离为定值例1(2023·郑州模拟)已知点F(0,1),直线l:y=4,P为曲线C上的任意一点,且|PF|是P到
第十一节圆锥曲线中的最值与范围问题题型归纳题型一 最值问题角度1 基本不等式法求最值例1(12分)(2023·青岛调研)已知椭圆Γ:eq\f(x2,a2)
第十二节圆锥曲线中的求值、证明与探索性问题题型归纳题型一 求值问题例1(2022·新高考Ⅰ卷)已知点A(2,1)在双曲线C:eq\f(x2,a2)-eq
第九节圆锥曲线中的定点问题题型一 直线过定点问题例1(2023·烟台一模改编)已知椭圆C:eq\f(x2,4)+y2=1,若A(-2,0),直线l:y=k