为您找到与圆锥曲线中的探究性问题相关的共 227 个结果:
专题02椭圆的焦点弦、中点弦、弦长问题一、单选题1.已知斜率为1的直线过椭圆的右焦点,交椭圆于两点,则弦的长为()A. B. C. D.2.经过椭圆(a>b>0
专题03椭圆中的参数问题一、单选题1.是椭圆上的点,、是椭圆的左、右焦点,设,则的最大值与最小值之和是()A.16 B.9 C.7 D.252.已知椭圆的左、右
专题05椭圆中的向量问题一、单选题1.过椭圆的左焦点作倾斜角为的直线交椭圆于两点,设O为坐标原点,则等于()A. B. C. D.2.已知分别为双曲线的左、右焦
专题07双曲线的焦点弦、中点弦、弦长问题一、单选题1.设,为双曲线的两个焦点,点在双曲线上且满足,则的面积为()A.2 B. C.4 D.2.已知等轴双曲线的中
专题12抛物线的焦点弦、中点弦、弦长问题一、单选题1.过点的直线与抛物线交于A,B两点,若线段AB中点的横坐标为2,则()A. B. C. D.2.已知直线过抛
专题04椭圆中的定点、定值、定直线问题一、单选题1.已知为椭圆的右焦点,点是直线上的动点,过点作椭圆的切线,,切点分别为,,则的值为()A.3 B.2 C.1
专题09双曲线中的定点、定值、定直线问题一、单选题1.已知为坐标原点,点在双曲线(为正常数)上,过点作双曲线的某一条渐近线的垂线,垂足为,则的值为()A. B.
专题08双曲线中的参数范围及最值问题一、单选题1.若点和点分别为双曲线的中心和左焦点,点为该双曲线上的任意一点,则的最小值为()A. B. C. D.2.过双曲
专题14抛物线中的定点、定值、定直线问题一、单选题1.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A.
专题10双曲线中的向量问题一、单选题1.过双曲线的右焦点作倾斜角为的直线交双曲线右支于,两点,若,则双曲线的离心率为()A. B. C.2 D.2.已知双曲线的
专题15圆锥曲线新定义问题一、单选题1.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对
专题19圆锥曲线与垂心问题一、单选题1.已知点,在抛物线上,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是()A. B. C. D.2.已知分别是
专题20圆锥曲线中的轨迹问题一、单选题1.已知点的坐标为,是圆上一动点,线段的垂直平分线交于,则动点的轨迹为()A.圆 B.椭圆 C.双曲线的一支 D.抛物线2
专题13抛物线中的参数问题一、单选题1.设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是()A.(6,+∞) B.[6,+∞)C.(3,+
专题16圆锥曲线与重心问题一、单选题1.已知点是椭圆上的三点,坐标原点是的重心,若点,直线的斜率恒为,则椭圆的离心率为()A. B.C. D.2.已知椭圆的右焦
圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】2x2已知椭圆
椭圆必会十大基本题型讲与练08以椭圆为情景的几何证明问题典例分析圆锥曲线中的证明问题是高考的热点内容之一,常见的有位置关系方面的,如证明相切、垂直、过定点等;数
椭圆必会十大基本题型讲与练04以椭圆为情景的最值与范围问题典例分析类型一:利用函数思想求范围或最值1.如图,已知椭圆的左焦点为F,O为坐标原点,设过点F且不与坐
椭圆必会十大基本题型讲与练07以椭圆为情景的定点问题典例分析类型一、线过定点问题1、已知A,B分别为椭圆E:eq\f(x2,a2)+y2=1(a>1)的左