为您找到与点差法求圆锥曲线相关的共 113 个结果:
椭圆必会十大基本题型讲与练01求椭圆的标准方程典例分析类型一、待定系数法第一步,做判断,根据条件判断椭圆的焦点是在x轴上,还是在y轴上,还是两个坐标轴都有可能,
椭圆必会十大基本题型讲与练03椭圆的离心率典例分析类型一、利用定义法求离心率1.直线经过椭圆的左焦点,交椭圆于、两点,交轴于点,若,则该椭圆的离心率是()A.
椭圆必会十大基本题型讲与练05椭圆中的中点弦问题典例分析1.过点M(-2,0)的直线m与椭圆+y2=1交于P1,P2两点,线段P1P2的中点为P,设直线m的斜率
专题7圆锥曲线压轴小题一、单选题1.(2021·河北沧州·高三月考)已知点P为抛物线上一动点,,,则的最大值为()A. B. C. D.2.(2021·安徽马鞍
专题12圆锥曲线1.已知三个数成等比数列,则圆锥曲线的离心率为()A. B. C. D.2.若双曲线的一个焦点,且渐近线方程为,则下列结论正确的是()A.的方程
专题7圆锥曲线压轴小题一、单选题1.(2021·河北沧州·高三月考)已知点P为抛物线上一动点,,,则的最大值为()A. B. C. D.【答案】B【分析】先讨论
圆锥曲线中的“设而不求”一、考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算
圆锥曲线中的探索性问题与不良结构问题一、考情分析圆锥曲线中的探索性问题与不良结构问题是近年高考的热点,探索性问题通常为探索是否存在符合的点、直线或结果是否为定值
超强圆锥曲线结论总结结论1:过圆x2+y2=2a2上任意点P作圆x2+y2=a2的两条切线,则两条切线垂直.x2y2结论2:过圆x2+y2=a2+b2上任意点P
备战2024年高考阶段性检测名校重组卷(新高考)解析几何本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分。在每
第九节圆锥曲线中的定点问题题型一 直线过定点问题例1(2023·烟台一模改编)已知椭圆C:eq\f(x2,4)+y2=1,若A(-2,0),直线l:y=k
第五节椭圆的方程与性质知识框架知识点归纳1.椭圆的定义(1)平面内到两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫作椭圆.这两个定点叫作椭
椭圆的方程与性质知识框架知识点归纳1.椭圆的定义(1)平面内到两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦
第一节直线的方程知识框架知识点归纳1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到直线重合时,所转过的
圆锥曲线在高考压轴题目中的考法探究题型分类类型1圆锥曲线中的轨迹方程问题在平面直角坐标系中,点分别在轴,轴上运动,且,动点满足.(1)求动点的轨迹的方程;(2)
圆锥曲线在高考小题中的考法探究题型归纳[题型一]曲线与轨迹已知双曲线:的左右焦点分别为,,过的直线与圆相切于点,且直线与双曲线的右支交于点,若,则双曲线的离心率