为您找到与极值点偏移问题的一般处理方法相关的共 210 个结果:
双曲线必会十大基本题型讲与练02双曲线的焦点三角形问题一、焦点三角形面积问题1.已知双曲线:的上、下焦点分别为,,为双曲线上一点,且满足,则的面积为(
双曲线必会十大基本题型讲与练05以双曲线为情境的中点弦问题典例分析一、求中点弦所在直线的方程1.已知双曲线的离心率为2,过点的直线与双曲线C交于A,B两点,且点
双曲线必会十大基本题型讲与练06以双曲线为情境的定值问题典例分析类型一:有关角的定值问题1.已知为坐标原点,双曲线:(,)的左焦点为,右顶点为,过点向双曲线的一
双曲线必会十大基本题型讲与练04以双曲线为情境的最值或范围问题典例分析类型一:数形结合解决与双曲线交汇的最值问题1.已知双曲线C的一条渐近线为直线,C的右顶点坐
椭圆必会十大基本题型讲与练05椭圆中的中点弦问题典例分析1.过点M(-2,0)的直线m与椭圆+y2=1交于P1,P2两点,线段P1P2的中点为P,设直线m的斜率
椭圆必会十大基本题型讲与练09椭圆与平面向量的交汇问题典例分析角度一、以共线向量为条件情景命题1、设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为,
椭圆必会十大基本题型讲与练04以椭圆为情景的最值或范围问题典例分析类型一:利用函数思想求范围或最值1.如图,已知椭圆的左焦点为F,O为坐标原点,设过点F且不与坐
椭圆必会十大基本题型讲与练10以椭圆为情景的探索性问题典例分析角度一、以探索多边形形状为情景的问题1、已知椭圆C:(),直线不过原点O且不平行于坐标轴,l与C有
椭圆必会十大基本题型讲与练08以椭圆为情景的几何证明问题典例分析圆锥曲线中的证明问题是高考的热点内容之一,常见的有位置关系方面的,如证明相切、垂直、过定点等;数
椭圆必会十大基本题型讲与练06以椭圆为情景的定值问题典例分析1、已知椭圆经过点,离心率为,过原点作两条直线,直线交椭圆于,直线交椭圆于,且.(1)求椭圆的方程;
椭圆必会十大基本题型讲与练07以椭圆为情景的定点问题典例分析类型一、线过定点问题1、已知A,B分别为椭圆E:eq\f(x2,a2)+y2=1(a>1)的左
椭圆必会十大基本题型讲与练04以椭圆为情景的最值与范围问题典例分析类型一:利用函数思想求范围或最值1.如图,已知椭圆的左焦点为F,O为坐标原点,设过点F且不与坐
第3讲渐近线问题一、单选题1.(2012·四川泸州市·高三月考(理))已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且
第4讲内切圆问题一、单选题1.(2020·全国高三专题练习)已知点P为双曲线右支上一点,点F1,F2分别为双曲线的左右焦点,点I是△PF1F2的内心(三角形内切