为您找到与双曲线中点弦问题例题相关的共 212 个结果:
专题02椭圆的焦点弦、中点弦、弦长问题一、单选题1.已知斜率为1的直线过椭圆的右焦点,交椭圆于两点,则弦的长为()A. B. C. D.2.经过椭圆(a>b>0
专题12抛物线的焦点弦、中点弦、弦长问题一、单选题1.过点的直线与抛物线交于A,B两点,若线段AB中点的横坐标为2,则()A. B. C. D.2.已知直线过抛
专题09双曲线中的定点、定值、定直线问题一、单选题1.已知为坐标原点,点在双曲线(为正常数)上,过点作双曲线的某一条渐近线的垂线,垂足为,则的值为()A. B.
专题08双曲线中的参数范围及最值问题一、单选题1.若点和点分别为双曲线的中心和左焦点,点为该双曲线上的任意一点,则的最小值为()A. B. C. D.2.过双曲
专题10双曲线中的向量问题一、单选题1.过双曲线的右焦点作倾斜角为的直线交双曲线右支于,两点,若,则双曲线的离心率为()A. B. C.2 D.2.已知双曲线的
专题02椭圆的焦点弦、中点弦、弦长问题一、单选题1.已知斜率为1的直线过椭圆的右焦点,交椭圆于两点,则弦的长为()A. B. C. D.【解析】由椭圆得,,所以
专题12抛物线的焦点弦、中点弦、弦长问题一、单选题1.过点的直线与抛物线交于A,B两点,若线段AB中点的横坐标为2,则()A. B. C. D.【解析】设直线方
抛物线必会十大基本题型讲与练02抛物线的中点弦问题典例分析类型一、求中点弦的弦长1.已知抛物线的焦点为F,过点F作直线l与抛物线分别交于A,B两点,若第一象限内
双曲线必会十大基本题型讲与练10以双曲线的为情境的探索性问题典例分析类型一:探索定值的存在性1.已知为坐标原点,椭圆:的焦距为,直线截圆:与椭圆所得的弦长之比为
双曲线必会十大基本题型讲与练09双曲线与平面向量的交汇问题典例分析类型一:以平面向量数量积为条件情境1.已知双曲线的左、右焦点分别为,,点A在双曲线上且,若的内
双曲线必会十大基本题型讲与练04以双曲线为情境的最值或范围问题典例分析类型一:数形结合解决与双曲线交汇的最值问题1.已知双曲线C的一条渐近线为直线,C的右顶点坐
第3讲渐近线问题一、单选题1.(2012·四川泸州市·高三月考(理))已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且
第4讲内切圆问题一、单选题1.(2020·全国高三专题练习)已知点P为双曲线右支上一点,点F1,F2分别为双曲线的左右焦点,点I是△PF1F2的内心(三角形内切
一网打尽外接球与内切球问题【命题规律】纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较
圆锥曲线中的探索性问题与不良结构问题一、考情分析圆锥曲线中的探索性问题与不良结构问题是近年高考的热点,探索性问题通常为探索是否存在符合的点、直线或结果是否为定值
指数型函数取对数问题一、考情分析函数与导数一直是高考中的热点与难点,在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化