为您找到与承揽合同定义及例子相关的共 22 个结果:
导数新定义问题一、单选题1.定义方程的实数根叫做函数的“新驻点”,若函数,的“新驻点”分别为,则的大小关系为()A. B. C. D.2.已知函数的定义域为,若
专题01函数的定义域专项突破一具体函数的定义域1.函数的定义域为( ).A. B.C. D.2.函数的定义域为( )A. B. C. D
专题18函数中的新定义问题一、单选题1.,表示不超过的最大整数,十八世纪,函数被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则(
专题01函数的定义域专项突破一具体函数的定义域1.函数的定义域为( ).A. B.C. D.【解析】要是函数有意义,必须,解之得则函数的定义域为,故
专题15圆锥曲线新定义问题一、单选题1.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对
论述类文本阅读之 下定义一、阅读下面的文字,完成题目。材料一:习近平同志在深入推动长江经济带发展座谈会上强调,要积极探索推广绿水青山转化为金山银山的路径,选择具
第6讲第三定义一、单选题1.(2018·广东佛山市·高三月考(文))双曲线的左右焦点分别为,焦距,以右顶点为圆心的圆与直线相切于点,设与交点为,若点恰为线段的中
专题04三角函数(新定义)一、单选题1.(2023秋·山东临沂·高一统考期末)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同
专题02函数与导数(新定义)一、单选题1.(2023·河南·洛阳市第三中学校联考一模)高斯是德国著名的数学家,近代数学的奠基者之一,享有“数学王子”的称号,用其
专题06向量专题(新定义)一、单选题1.(2023·全国·高三专题练习)定义平面向量之间的一种运算“⊙”如下:对任意的.令,下面说法错误的是( )A.若与共
专题08数列专题(新定义)一、单选题1.(2023春·甘肃张掖·高二高台县第一中学校考阶段练习)对于正项数列中,定义:为数列的“匀称值”已知数列的“匀称值”为,
专题10解析几何专题(新定义)一、单选题1.(2023春·浙江·高三校联考开学考试)2022年卡塔尔世界杯会徽(如图)正视图近似于伯努利双纽线,定义在平面直角坐
专题12立体几何专题(新定义)一、单选题1.(2022秋·内蒙古赤峰·高二赤峰二中校考阶段练习)已知体积公式中的常数称为“立圆率”.对于等边圆柱(轴截面是正方形
专题15集合专题(新定义)一、单选题1.(2023·全国·模拟预测)已知集合A,B满足,若,且,表示两个不同的“AB互衬对”,则满足题意的“AB互衬对”个数为(
九省联考后17分综合新定义压轴问题分类整理目录一、数列新定义二、平面向量新定义三、圆锥曲线新定义四、三角函数新定义五、函数新定义六、概率新定义七、集合新定义八、