为您找到与函数最值常用求法相关的共 186 个结果:
考向05函数的单调性与最值1.(2022年浙江卷第7题)已知,则()A.25 B.5 C. D.【答案】C【解析】因为,,即,所以.故选:C.2.(2022年新
考向14三角函数的单调性和最值1.【2022年北京卷第5题】已知函数,则 (A)在上单调递减 (B)在上单调递增 (C)在上单调递减 (D)在上单调递增【答案】
考向14三角函数的单调性和最值1.【2022年北京卷第5题】已知函数,则 A.在上单调递减 B.在上单调递增 C.在上单调递减 D.在上单调递增【答案】C【解析
专题09 函数的最值考点一 求已知函数的最值【方法总结】导数法求给定区间上函数的最值问题的一般步骤(1)求函数f(x)的导数f′(x);(2)求f(x)在给定区
专题10 含参函数的极值、最值讨论考点一 含参函数的极值【例题选讲】[例1] 设a>0,函数f(x)=eq\f(1,2)x2-(a+1)x+a(1+lnx
多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八
专题03函数的最值(值域)求法专项突破一单调性法1.函数在的最大值是( )A. B. C. D.2.已知函数,若对任意恒成立,则实数m的取值范围为(
专题03函数的最值(值域)求法专项突破一单调性法1.函数在的最大值是( )A. B. C. D.【解析】因为函数是单调递增函数,所以函数也是单调递增
函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。在高考试卷中的形式千变万化,但万变
专题04具有关于某点对称的函数的最值性质【方法点拨】1.若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0.2.关于某一点中心对称的函数在对称区
备战2024年高考阶段性检测名校重组卷(新高考)第二章函数本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分。在
第一章集合、常用逻辑用语和不等式本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只
备战2024年高考阶段性检测名校重组卷(新高考)第四章三角函数本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分
第十一节圆锥曲线中的最值与范围问题题型归纳题型一 最值问题角度1 基本不等式法求最值例1(12分)(2023·青岛调研)已知椭圆Γ:eq\f(x2,a2)